Search results
Results From The WOW.Com Content Network
Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line
The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.
In general, the area of a triangle is half the product of its base and height. The formula of the area of an equilateral triangle can be obtained by substituting the altitude formula. [7] Another way to prove the area of an equilateral triangle is by using the trigonometric function. The area of a triangle is formulated as the half product of ...
Napoleon's theorem: If the triangles centered on L, M, N are equilateral, then so is the green triangle.. In geometry, Napoleon's theorem states that if equilateral triangles are constructed on the sides of any triangle, either all outward or all inward, the lines connecting the centres of those equilateral triangles themselves form an equilateral triangle.
In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are arbitrary real numbers. If values are given such that a, b, and c do not correspond to a real triangle, the value for A is imaginary.
A version of the isoperimetric inequality for triangles states that the triangle of greatest area among all those with a given perimeter is equilateral. [35] The triangle of largest area of all those inscribed in a given circle is equilateral; and the triangle of smallest area of all those circumscribed around a given circle is equilateral. [36]
In terms of the circumradius R, the area is: [1] = = The span S of the dodecagon is the distance between two parallel sides and is equal to twice the apothem. A simple formula for area (given side length and span) is: =
Because each special triangle has area , a polygon of area will be subdivided into special triangles. [ 5 ] The subdivision of the polygon into triangles forms a planar graph , and Euler's formula V − E + F = 2 {\displaystyle V-E+F=2} gives an equation that applies to the number of vertices, edges, and faces of any planar graph.