Ad
related to: electromagnetic induction mcq class 12 biology chapter 1 question and answerstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
IAT consists of 60 questions: 15 questions each from Biology, Chemistry, Mathematics, and Physics. Total time for answering the test is 3 hours. Questions are of multiple choice type with only one correct answer. Each correct answer is awarded 4 marks. Each incorrect answer leads to the deduction of 1 mark. Unanswered questions are awarded 0 mark.
Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction .
In electromagnetism, Jefimenko's equations (named after Oleg D. Jefimenko) give the electric field and magnetic field due to a distribution of electric charges and electric current in space, that takes into account the propagation delay (retarded time) of the fields due to the finite speed of light and relativistic effects.
It is helpful to associate changing electric currents with a build-up or decrease of magnetic field energy. The corresponding energy transfer requires or generates a voltage. A mechanical analogy in the K = 1 case with magnetic field energy (1/2)Li 2 is a body with mass M, velocity u and kinetic energy (1/2)Mu 2. The rate of change of velocity ...
Another possible mechanism of magnetoreception in animals is electromagnetic induction in cartilaginous fish, namely sharks, stingrays, and chimaeras. These fish have electroreceptive organs, the ampullae of Lorenzini, which can detect small variations in electric potential. The organs are mucus-filled and consist of canals that connect pores ...
This field causes, by electromagnetic induction, an electric current to flow in the wire loop on the right. The most widespread version of Faraday's law states: The electromotive force around a closed path is equal to the negative of the time rate of change of the magnetic flux enclosed by the path.
Bioelectromagnetics, also known as bioelectromagnetism, is the study of the interaction between electromagnetic fields and biological entities. Areas of study include electromagnetic fields produced by living cells, tissues or organisms, the effects of man-made sources of electromagnetic fields like mobile phones, and the application of electromagnetic radiation toward therapies for the ...
The net work on q 1 thereby generates a magnetic field whose strength (in units of magnetic flux density (1 tesla = 1 volt-second per square meter)) is proportional to the speed increase of q 1. This magnetic field can interact with a neighboring charge q 2 , passing on this momentum to it, and in return, q 1 loses momentum.