Search results
Results From The WOW.Com Content Network
In computer science, a control-flow graph (CFG) is a representation, using graph notation, of all paths that might be traversed through a program during its execution. The control-flow graph was discovered by Frances E. Allen , [ 1 ] who noted that Reese T. Prosser used boolean connectivity matrices for flow analysis before.
In computer science, a code property graph (CPG) is a computer program representation that captures syntactic structure, control flow, and data dependencies in a property graph. The concept was originally introduced to identify security vulnerabilities in C and C++ system code, [ 1 ] but has since been employed to analyze web applications , [ 2 ...
In computer science, control-flow analysis (CFA) is a static-code-analysis technique for determining the control flow of a program. The control flow is expressed as a control-flow graph (CFG). For both functional programming languages and object-oriented programming languages, the term CFA, and elaborations such as k-CFA, refer to specific ...
In computer science, control flow (or flow of control) is the order in which individual statements, instructions or function calls of an imperative program are executed or evaluated. The emphasis on explicit control flow distinguishes an imperative programming language from a declarative programming language.
The control-flow graph of the source code above; the red circle is the entry point of the function, and the blue circle is the exit point. The exit has been connected to the entry to make the graph strongly connected.
Converting ordinary code into SSA form is primarily a matter of replacing the target of each assignment with a new variable, and replacing each use of a variable with the "version" of the variable reaching that point. For example, consider the following control-flow graph: An example control-flow graph, before conversion to SSA
A call graph generated for a simple computer program in Python. A call graph (also known as a call multigraph [1] [2]) is a control-flow graph, [3] which represents calling relationships between subroutines in a computer program. Each node represents a procedure and each edge (f, g) indicates that procedure f calls procedure g.
Corresponding dominator tree of the control flow graph. In computer science, a node d of a control-flow graph dominates a node n if every path from the entry node to n must go through d. Notationally, this is written as d dom n (or sometimes d ≫ n). By definition, every node dominates itself. There are a number of related concepts: