When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Branch predictor - Wikipedia

    en.wikipedia.org/wiki/Branch_predictor

    Branch prediction attempts to guess whether a conditional jump will be taken or not. Branch target prediction attempts to guess the target of a taken conditional or unconditional jump before it is computed by decoding and executing the instruction itself. Branch prediction and branch target prediction are often combined into the same circuitry.

  3. Probabilistic soft logic - Wikipedia

    en.wikipedia.org/wiki/Probabilistic_soft_logic

    Probabilistic Soft Logic (PSL) is a statistical relational learning (SRL) framework for modeling probabilistic and relational domains. [2] It is applicable to a variety of machine learning problems, such as collective classification, entity resolution, link prediction, and ontology alignment.

  4. Hinge loss - Wikipedia

    en.wikipedia.org/wiki/Hinge_loss

    The vertical axis represents the value of the Hinge loss (in blue) and zero-one loss (in green) for fixed t = 1, while the horizontal axis represents the value of the prediction y. The plot shows that the Hinge loss penalizes predictions y < 1, corresponding to the notion of a margin in a support vector machine.

  5. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    The learning problem consists of inferring the function that maps between the input and the output, such that the learned function can be used to predict the output from future input. Depending on the type of output, supervised learning problems are either problems of regression or problems of classification. If the output takes a continuous ...

  6. Structured prediction - Wikipedia

    en.wikipedia.org/wiki/Structured_prediction

    Structured prediction or structured output learning is an umbrella term for supervised machine learning techniques that involves predicting structured objects, rather than discrete or real values. [ 1 ]

  7. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  8. Loss function - Wikipedia

    en.wikipedia.org/wiki/Loss_function

    Leonard J. Savage argued that using non-Bayesian methods such as minimax, the loss function should be based on the idea of regret, i.e., the loss associated with a decision should be the difference between the consequences of the best decision that could have been made under circumstances will be known and the decision that was in fact taken before they were known.

  9. Backpropagation through time - Wikipedia

    en.wikipedia.org/wiki/Backpropagation_through_time

    Back_Propagation_Through_Time(a, y) // a[t] is the input at time t. y[t] is the output Unfold the network to contain k instances of f do until stopping criterion is met: x := the zero-magnitude vector // x is the current context for t from 0 to n − k do // t is time. n is the length of the training sequence Set the network inputs to x, a[t ...