Search results
Results From The WOW.Com Content Network
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
Consider e.g. the value of ("east displacement") when and are on either side of the ±180° meridian, or the value of ("mean latitude") for the two positions (=89°, =45°) and (=89°, =−135°). If a calculation based on latitude/longitude should be valid for all Earth positions, it should be verified that the discontinuity and the Poles are ...
The calculation is essentially the conversion of the equatorial polar coordinates of Mecca (i.e. its longitude and latitude) to its polar coordinates (i.e. its qibla and distance) relative to a system whose reference meridian is the great circle through the given location and the Earth's poles and whose polar axis is the line through the ...
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
Blue Marble's first software product, the Geographic Calculator, [2] was developed in 1992 and released in 1993. The Geographic Calculator is a coordinate conversion library with a database of coordinate mathematical objects including projections, coordinate systems, datums, ellipsoids, linear and angular units. The tool is primarily used to ...
A WKT format is defined to describe the operation methods and parameters used to convert or transform coordinates between two different coordinate reference systems. The WKT 1 and WKT 2 formats are incompatible regarding coordinate operations, because of differences in the modelling. [13]
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
A coordinate system conversion is a conversion from one coordinate system to another, with both coordinate systems based on the same geodetic datum. Common conversion tasks include conversion between geodetic and earth-centered, earth-fixed coordinates and conversion from one type of map projection to another.