Search results
Results From The WOW.Com Content Network
A graph is commonly used to give an intuitive picture of a function. As an example of how a graph helps to understand a function, it is easy to see from its graph whether a function is increasing or decreasing. Some functions may also be represented by bar charts.
Kronecker delta function: is a function of two variables, usually integers, which is 1 if they are equal, and 0 otherwise. Minkowski's question mark function: Derivatives vanish on the rationals. Weierstrass function: is an example of continuous function that is nowhere differentiable
Nowhere continuous function: is not continuous at any point of its domain; for example, the Dirichlet function. Homeomorphism: is a bijective function that is also continuous, and whose inverse is continuous. Open function: maps open sets to open sets. Closed function: maps closed sets to closed sets.
For example, in the expression (f(x)-1)/(f(x)+1), the function f cannot be called only once with its value used two times since the two calls may return different results. Moreover, in the few languages which define the order of evaluation of the division operator's operands, the value of x must be fetched again before the second call, since ...
In the mathematical field of real analysis, a simple function is a real (or complex)-valued function over a subset of the real line, similar to a step function. Simple functions are sufficiently "nice" that using them makes mathematical reasoning, theory, and proof easier. For example, simple functions attain only a finite number of values.
A function is bijective if it is both injective and surjective. A bijective function is also called a bijection or a one-to-one correspondence (not to be confused with one-to-one function, which refers to injection). A function is bijective if and only if every possible image is mapped to by exactly one argument. [1]
Elementary functions were introduced by Joseph Liouville in a series of papers from 1833 to 1841. [2] [3] [4] An algebraic treatment of elementary functions was started by Joseph Fels Ritt in the 1930s. [5] Many textbooks and dictionaries do not give a precise definition of the elementary functions, and mathematicians differ on it. [6]
The function () = has ″ = >, so f is a convex function. It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. The function () = has ″ =, so f is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points.