Search results
Results From The WOW.Com Content Network
The anaerobic glycolysis (lactic acid) system is dominant from about 10–30 seconds during a maximal effort. It produces 2 ATP molecules per glucose molecule, [3] or about 5% of glucose's energy potential (38 ATP molecules). [4] [5] The speed at which ATP is produced is about 100 times that of oxidative phosphorylation. [1]
Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor, such as oxygen, to produce large amounts of energy and drive the bulk production of ATP. Anaerobic respiration is used by microorganisms, either bacteria or archaea, in which neither oxygen (aerobic respiration) nor ...
d -Glucose + 2 [NAD] + + 2 [ADP] + 2 [P] i 2 × Pyruvate 2 × + 2 [NADH] + 2 H + + 2 [ATP] + 2 H 2 O Glycolysis pathway overview The use of symbols in this equation makes it appear unbalanced with respect to oxygen atoms, hydrogen atoms, and charges. Atom balance is maintained by the two phosphate (P i) groups: Each exists in the form of a hydrogen phosphate anion, dissociating to contribute ...
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.
Though slower than glucose, its yield is much higher. One molecule of glucose produces through aerobic glycolysis a net of 30-32 ATP; [11] whereas a fatty acid can produce through beta oxidation a net of approximately 100 ATP depending on the type of fatty acid. For example, palmitic acid can produce a net of 106 ATP. [12]
The amount of energy released by oxidative phosphorylation is high, compared with the amount produced by anaerobic fermentation. Glycolysis produces only 2 ATP molecules, but somewhere between 30 and 36 ATPs are produced by the oxidative phosphorylation of the 10 NADH and 2 succinate molecules made by converting one molecule of glucose to ...
Generally, in anaerobic respiration sugars are broken down into carbon dioxide and other waste products that are dictated by the oxidant the cell uses. Whereas in aerobic respiration the oxidant is always oxygen, in anaerobic respiration it varies. Each oxidant produces a different waste product, such as nitrite, succinate, sulfide, methane ...
Glycolysis, which means “sugar splitting,” is the initial process in the cellular respiration pathway. Glycolysis can be either an aerobic or anaerobic process. When oxygen is present, glycolysis continues along the aerobic respiration pathway. If oxygen is not present, then ATP production is restricted to anaerobic respiration.