Search results
Results From The WOW.Com Content Network
The neutron transport equation is a balance statement that conserves neutrons. Each term represents a gain or a loss of a neutron, and the balance, in essence, claims that neutrons gained equals neutrons lost. It is formulated as follows: [1]
The intensity field can in principle be solved from the integrodifferential radiative transfer equation (RTE), but an exact solution is usually impossible and even in the case of geometrically simple systems can contain unusual special functions such as the Chandrasekhar's H-function and Chandrasekhar's X- and Y-functions. [3]
Download as PDF; Printable version; ... m n = neutron rest mass ... These equations need to be refined such that the notation is defined as has been done for the ...
This involves computing exact or approximate solutions of the transport equation, and there are various forms of the transport equation that have been studied. Common varieties include steady-state vs time-dependent, scalar vs vector (the latter including polarization), and monoenergetic vs multi-energy (multi-group).
The Monte Carlo method for radiation particle transport has its origins at LANL dates back to 1946. [3] The creators of these methods were Stanislaw Ulam, John von Neumann, Robert Richtmyer, and Nicholas Metropolis. [4] Monte Carlo for radiation transport was conceived by Stanislaw Ulam in 1946 while playing Solitaire while recovering from an ...
Geometric buckling is a measure of neutron leakage and material buckling is a measure of the difference between neutron production and neutron absorption. [1] When nuclear fission occurs inside of a nuclear reactor, neutrons are produced. [1] These neutrons then, to state it simply, either react with the fuel in the reactor or escape from the ...
Neutron flux in asymptotic giant branch stars and in supernovae is responsible for most of the natural nucleosynthesis producing elements heavier than iron.In stars there is a relatively low neutron flux on the order of 10 5 to 10 11 cm −2 s −1, resulting in nucleosynthesis by the s-process (slow neutron-capture process).
Because the Boltzmann equation is practical in solving problems in rarefied or dilute gases, it has been used in many diverse areas of technology. It is used to calculate Space Shuttle re-entry in the upper atmosphere. [42] It is the basis for Neutron transport theory, and ion transport in Semiconductors. [43] [44]