Ads
related to: different uses of chromatography- Columns
Explore the Available Columns To
Get the Information You Need!
- Contact Us
Reach Us Via Phone.
We’d Love To Hear From You!
- Columns
Search results
Results From The WOW.Com Content Network
Chromatography, pronounced / ˌ k r oʊ m ə ˈ t ɒ ɡ r ə f i /, is derived from Greek χρῶμα chrōma, which means "color", and γράφειν gráphein, which means "to write".". The combination of these two terms was directly inherited from the invention of the technique first used to separate biological pigme
Gas chromatography (GC) is a common type of chromatography used in analytical chemistry for separating and analyzing compounds that can be vaporized without decomposition. Typical uses of GC include testing the purity of a particular substance, or separating the different components of a mixture. [ 1 ]
Partition chromatography uses a retained solvent, on the surface or within the grains or fibers of an "inert" solid supporting matrix as with paper chromatography; or takes advantage of some coulombic and/or hydrogen donor interaction with the stationary phase. Analyte molecules partition between a liquid stationary phase and the eluent.
Chromatography columns of different types are used in both gas and liquid chromatography: Liquid chromatography: Traditional chromatography columns were made of glass. Modern columns are mostly made of borosilicate glass, acrylic glass or stainless steel. To prevent the stationary phase from leaking out of the column interior a polymer ...
Column chromatography in chemistry is a chromatography method used to isolate a single chemical compound from a mixture. Chromatography is able to separate substances based on differential absorption of compounds to the adsorbent; compounds move through the column at different rates, allowing them to be separated into fractions.
Ion chromatography (or ion-exchange chromatography) is a form of chromatography that separates ions and ionizable polar molecules based on their affinity to the ion exchanger. [1] It works on almost any kind of charged molecule —including small inorganic anions, [ 2 ] large proteins , [ 3 ] small nucleotides , [ 4 ] and amino acids .