When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cis effect - Wikipedia

    en.wikipedia.org/wiki/Cis_effect

    In inorganic chemistry, the cis effect is defined as the labilization (or destabilization) of CO ligands that are cis to other ligands. CO is a well-known strong pi-accepting ligand in organometallic chemistry that will labilize in the cis position when adjacent to ligands due to steric and electronic effects.

  3. Metal carbonyl - Wikipedia

    en.wikipedia.org/wiki/Metal_carbonyl

    For compounds with doubly bridging CO ligands, denoted μ 2-CO or often just μ-CO, the bond stretching frequency ν CO is usually shifted by 100–200 cm −1 to lower energy compared to the signatures of terminal CO, which are in the region 1800 cm −1. Bands for face-capping (μ 3) CO ligands appear at even lower energies. In addition to ...

  4. Spectrochemical series - Wikipedia

    en.wikipedia.org/wiki/Spectrochemical_series

    A spectrochemical series is a list of ligands ordered by ligand "strength", and a list of metal ions based on oxidation number, group and element.For a metal ion, the ligands modify the difference in energy Δ between the d orbitals, called the ligand-field splitting parameter in ligand field theory, or the crystal-field splitting parameter in crystal field theory.

  5. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    That is, the unoccupied d orbitals of transition metals participate in bonding, which influences the colors they absorb in solution. In ligand field theory, the various d orbitals are affected differently when surrounded by a field of neighboring ligands and are raised or lowered in energy based on the strength of their interaction with the ...

  6. Ligand - Wikipedia

    en.wikipedia.org/wiki/Ligand

    In cases where the ligand has low energy LUMO, such orbitals also participate in the bonding. The metal–ligand bond can be further stabilised by a formal donation of electron density back to the ligand in a process known as back-bonding. In this case a filled, central-atom-based orbital donates density into the LUMO of the (coordinated) ligand.

  7. Alkaline earth octacarbonyl complex - Wikipedia

    en.wikipedia.org/wiki/Alkaline_earth_octa...

    In this model, bonding between a CO ligand and the metal center is described using the Dewar-Chatt-Duncanson model. The CO ligand binds to the metal through σ-donation, and the metal center engages in π back-donation with the carbonyl ligand. The alkaline earth octacarbonyl complexes contain a metal center with a formal oxidation state of zero.

  8. Charge-transfer band - Wikipedia

    en.wikipedia.org/wiki/Charge-transfer_band

    The energies of transitions correlate with the order of the electrochemical series. The metal ions that are most easily reduced correspond to the lowest energy transitions. The above trend is consistent with transfer of electrons from the ligand to the metal, thus resulting in a reduction of metal ions by the ligand.

  9. Tanabe–Sugano diagram - Wikipedia

    en.wikipedia.org/wiki/Tanabe–Sugano_diagram

    Considering both weak and strong ligand fields, a Tanabe–Sugano diagram shows the energy splitting of the spectral terms with the increase of the ligand field strength. It is possible for us to understand how the energy of the different configuration states is distributed at certain ligand strengths.