Search results
Results From The WOW.Com Content Network
In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.
In expressions such as , the notation for exponentiation is usually to write the exponent as a superscript to the base number . But many environments — such as programming languages and plain-text e-mail — do not support superscript typesetting.
Exponentiation with Montgomery reduction O ( M ( n ) k ) {\displaystyle O(M(n)\,k)} On stronger computational models, specifically a pointer machine and consequently also a unit-cost random-access machine it is possible to multiply two n -bit numbers in time O ( n ).
Python uses the ** operator for exponentiation. Python uses the + operator for string concatenation. Python uses the * operator for duplicating a string a specified number of times. The @ infix operator is intended to be used by libraries such as NumPy for matrix multiplication. [104] [105]
The properties of NAF make it useful in various algorithms, especially some in cryptography; e.g., for reducing the number of multiplications needed for performing an exponentiation. In the algorithm, exponentiation by squaring, the number of multiplications depends on the number of non-zero bits. If the exponent here is given in NAF form, a ...
The concepts of successor, addition, multiplication and exponentiation are all hyperoperations; the successor operation (producing x + 1 from x) is the most primitive, the addition operator specifies the number of times 1 is to be added to itself to produce a final value, multiplication specifies the number of times a number is to be added to ...
Exponentiation is easily misconstrued: note that the operation of raising to a power is right-associative (see below). Tetration is iterated exponentiation (call this right-associative operation ^), starting from the top right side of the expression with an instance a^a (call this value c). Exponentiating the next leftward a (call this the ...
A third method drastically reduces the number of operations to perform modular exponentiation, while keeping the same memory footprint as in the previous method. It is a combination of the previous method and a more general principle called exponentiation by squaring (also known as binary exponentiation).