When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Joint probability distribution - Wikipedia

    en.wikipedia.org/wiki/Joint_probability_distribution

    If the points in the joint probability distribution of X and Y that receive positive probability tend to fall along a line of positive (or negative) slope, ρ XY is near +1 (or −1). If ρ XY equals +1 or −1, it can be shown that the points in the joint probability distribution that receive positive probability fall exactly along a straight ...

  3. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Dirac delta function, although not strictly a probability distribution, is a limiting form of many continuous probability functions. It represents a discrete probability distribution concentrated at 0 — a degenerate distribution — it is a Distribution (mathematics) in the generalized function sense; but the notation treats it as if it ...

  4. Conditional probability distribution - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability...

    The graph shows a bivariate normal joint density for random variables and . To see the distribution of Y {\displaystyle Y} conditional on X = 70 {\displaystyle X=70} , one can first visualize the line X = 70 {\displaystyle X=70} in the X , Y {\displaystyle X,Y} plane , and then visualize the plane containing that line and perpendicular to the X ...

  5. Bayesian network - Wikipedia

    en.wikipedia.org/wiki/Bayesian_network

    Using a Bayesian network can save considerable amounts of memory over exhaustive probability tables, if the dependencies in the joint distribution are sparse. For example, a naive way of storing the conditional probabilities of 10 two-valued variables as a table requires storage space for 2 10 = 1024 {\displaystyle 2^{10}=1024} values.

  6. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    The probability content of the multivariate normal in a quadratic domain defined by () = ′ + ′ + > (where is a matrix, is a vector, and is a scalar), which is relevant for Bayesian classification/decision theory using Gaussian discriminant analysis, is given by the generalized chi-squared distribution. [17]

  7. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    Figure 1: The left graph shows a probability density function. The right graph shows the cumulative distribution function. The value at a in the cumulative distribution equals the area under the probability density curve up to the point a. Absolutely continuous probability distributions can be described in several ways.

  8. Chain rule (probability) - Wikipedia

    en.wikipedia.org/wiki/Chain_rule_(probability)

    In probability theory, the chain rule [1] (also called the general product rule [2] [3]) describes how to calculate the probability of the intersection of, not necessarily independent, events or the joint distribution of random variables respectively, using conditional probabilities.

  9. Marginal distribution - Wikipedia

    en.wikipedia.org/wiki/Marginal_distribution

    For example, suppose P(L = red) = 0.2, P(L = yellow) = 0.1, and P(L = green) = 0.7. Multiplying each column in the conditional distribution by the probability of that column occurring results in the joint probability distribution of H and L, given in the central 2×3 block of entries. (Note that the cells in this 2×3 block add up to 1).