Search results
Results From The WOW.Com Content Network
For instance, ideally the solution of a differential equation discretized via a regular grid will converge to the solution of the continuous equation as the grid spacing goes to zero, and if so the asymptotic rate and order of that convergence are important properties of the gridding method.
In numerical analysis, the secant method is a root-finding algorithm that uses a succession of roots of secant lines to better approximate a root of a function f. The secant method can be thought of as a finite-difference approximation of Newton's method , so it is considered a quasi-Newton method .
This method does not require the computation (nor the existence) of a derivative, but the price is slower convergence (the order of convergence is the golden ratio, approximately 1.62 [2]). A generalization of the secant method in higher dimensions is Broyden's method.
Sidi's generalized secant method is a root-finding algorithm, that is, a numerical method for solving equations of the form () =.The method was published by Avram Sidi. [1]The method is a generalization of the secant method.
The convergence rate of the bisection method could possibly be improved by using a different solution estimate. The regula falsi method calculates the new solution estimate as the x-intercept of the line segment joining the endpoints of the function on the current bracketing interval. Essentially, the root is being approximated by replacing the ...
Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.
which is called the secant equation (the Taylor series of the gradient itself). In more than one dimension is underdetermined. In one dimension, solving for and applying the Newton's step with the updated value is equivalent to the secant method. The various quasi-Newton methods differ in their choice of the solution to the secant equation (in ...
The fixed point iteration x n+1 = cos x n with initial value x 1 = −1.. An attracting fixed point of a function f is a fixed point x fix of f with a neighborhood U of "close enough" points around x fix such that for any value of x in U, the fixed-point iteration sequence , (), (()), ((())), … is contained in U and converges to x fix.