Search results
Results From The WOW.Com Content Network
Minichromosomes can be either linear or circular pieces of DNA. [3] By minimizing the amount of unnecessary genetic information on the chromosome and including the basic components necessary for DNA replication (centromere, telomeres, and replication sequences), molecular biologists aim to construct a chromosomal platform which can be utilized to insert or present new genes into a host cell.
The minichromosome maintenance protein complex (MCM) is a DNA helicase essential for genomic DNA replication. Eukaryotic MCM consists of six gene products, Mcm2–7, which form a heterohexamer.
Engineering biology is the set of methods for designing, building, and testing engineered biological systems which have been used to manipulate information, construct materials, process chemicals, produce energy, provide food, and help maintain or enhance human health and environment.
The structures of Borg genomes are conserved and distinct from the plasmids and chromosomes of Methanoperedens, as well as other archaeal genomes. [4] Borgs do not contain protein-coding genes that are associated with plasmids or viruses; they also lack rRNA genes, origins of replication, or other vital genes and features that are commonly found within minichromosomes (also known as ...
The enzyme's unique and specific recombination system is exploited to manipulate genes and chromosomes in a huge range of research, such as gene knock out or knock in studies. The enzyme's ability to operate efficiently in a wide range of cellular environments (including mammals, plants, bacteria, and yeast) enables the Cre-Lox recombination ...
With the onset of these discoveries, several approaches in classifying different components of multipartite genomes were proposed. Various terms have been used to describe large replicons other than the main chromosome, including simply designating them as additional chromosomes, or "minichromosomes", "megaplasmids", or "secondary chromosomes".
A biological systems engineer will often address the solution to a problem from the perspective of employing living systems to enact change. For example, biological treatment methodologies can be applied to provide access to clean drinking water [7] or for sequestration of carbon dioxide. [8]
Micro-mass cultures of C3H-10T1/2 cells at varied oxygen tensions stained with Alcian blue. A commonly applied definition of tissue engineering, as stated by Langer [3] and Vacanti, [4] is "an interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve [Biological tissue] function or a ...