When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    With this definition, two elements a and b may very well have several greatest common divisors, or none at all. If R is an integral domain, then any two GCDs of a and b must be associate elements, since by definition either one must divide the other. Indeed, if a GCD exists, any one of its associates is a GCD as well.

  3. List of common physics notations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_physics...

    velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian heat capacity ratio: unitless surface tension: newton per meter (N/m) delta: change in a variable (e.g. ) unitless Laplace operator: per square meter (m −2)

  4. Glossary of physics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_physics

    In physics, the term sometimes refers collectively to electromagnetic radiation of any wavelength, in which case light includes gamma rays, X-rays, microwaves, and radio waves, but in common usage "light" more often refers specifically to visible light. linear actuator A form of motor that generates a linear movement directly. linear algebra

  5. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    In particular, if GCDs exist in R, and if X is reduced to one variable, this proves that GCDs exist in R[X] (Euclid's algorithm proves the existence of GCDs in F[X]). A polynomial in n variables may be considered as a univariate polynomial over the ring of polynomials in ( n − 1 ) variables.

  6. GCD domain - Wikipedia

    en.wikipedia.org/wiki/GCD_domain

    The equivalence between the existence of GCDs and the existence of LCMs is not a corollary of the similar result on complete lattices, as the quotient R/~ need not be a complete lattice for a GCD domain R. [citation needed] If R is a GCD domain, then the polynomial ring R[X 1,...,X n] is also a GCD domain. [2]

  7. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    The Euclidean algorithm is based on the principle that the greatest common divisor of two numbers does not change if the larger number is replaced by its difference with the smaller number. For example, 21 is the GCD of 252 and 105 (as 252 = 21 × 12 and 105 = 21 × 5), and the same number 21 is also the GCD of 105 and 252 − 105 = 147. Since ...

  8. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    Visualisation of using the binary GCD algorithm to find the greatest common divisor (GCD) of 36 and 24. Thus, the GCD is 2 2 × 3 = 12.. The binary GCD algorithm, also known as Stein's algorithm or the binary Euclidean algorithm, [1] [2] is an algorithm that computes the greatest common divisor (GCD) of two nonnegative integers.

  9. List of mathematical abbreviations - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical...

    def – define or definition. deg – degree of a polynomial, or other recursively-defined objects such as well-formed formulas. (Also written as ∂.) del – del, a differential operator. (Also written as.) det – determinant of a matrix or linear transformation. DFT – discrete Fourier transform.