When.com Web Search

  1. Ad

    related to: factoring trinomials in algebra calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    In mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors.This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm.

  3. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In elementary algebra, factoring a polynomial reduces the problem of finding its roots to finding the roots of the factors. Polynomials with coefficients in the integers or in a field possess the unique factorization property, a version of the fundamental theorem of arithmetic with prime numbers replaced by irreducible polynomials.

  4. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields , a fundamental step is a factorization of a polynomial over a finite field .

  5. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that A = BQ + R, and either R = 0 or the degree of R is lower than the degree of B.

  6. FOIL method - Wikipedia

    en.wikipedia.org/wiki/FOIL_method

    In elementary algebra, FOIL is a mnemonic for the standard method of multiplying two binomials [1] —hence the method may be referred to as the FOIL method.The word FOIL is an acronym for the four terms of the product:

  7. Cantor–Zassenhaus algorithm - Wikipedia

    en.wikipedia.org/wiki/Cantor–Zassenhaus_algorithm

    The Cantor–Zassenhaus algorithm takes as input a square-free polynomial (i.e. one with no repeated factors) of degree n with coefficients in a finite field whose irreducible polynomial factors are all of equal degree (algorithms exist for efficiently factoring arbitrary polynomials into a product of polynomials satisfying these conditions, for instance, () / ((), ′ ()) is a squarefree ...

  8. Trinomial - Wikipedia

    en.wikipedia.org/wiki/Trinomial

    For instance, the polynomial x 2 + 3x + 2 is an example of this type of trinomial with n = 1. The solution a 1 = −2 and a 2 = −1 of the above system gives the trinomial factorization: x 2 + 3x + 2 = (x + a 1)(x + a 2) = (x + 2)(x + 1). The same result can be provided by Ruffini's rule, but with a more complex and time-consuming process.

  9. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas are frequently used with polynomials with coefficients in any integral domain R. Then, the quotients a i / a n {\displaystyle a_{i}/a_{n}} belong to the field of fractions of R (and possibly are in R itself if a n {\displaystyle a_{n}} happens to be invertible in R ) and the roots r i {\displaystyle r_{i}} are taken in an ...