Search results
Results From The WOW.Com Content Network
Microfluidic structures include micropneumatic systems, i.e. microsystems for the handling of off-chip fluids (liquid pumps, gas valves, etc.), and microfluidic structures for the on-chip handling of nanoliter (nl) and picoliter (pl) volumes. [64] To date, the most successful commercial application of microfluidics is the inkjet printhead. [65]
Search for any page by title using a Wikipedia-like Search box. Browse pages by alphabetical order using Special:AllPages. Find a word on a page. Access a history of viewed pages. Bookmark your favorite pages. Downloads images and other files on demand (when connected to the internet) Sets up Simple Wikipedia in less than 5 minutes
Microfluidic devices make possible the study of a single cell to a few hundred cells in a 3D environment. Comparatively, macroscopic 2D cultures have 10 4 to 10 7 cells on a flat surface. [10] Microfluidics also allow for chemical gradients, the continuous flow of fresh media, high through put testing, and direct output to analytical ...
Microfluidics deals with the behavior, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale. Typically, micro means one of the following features:
Lab disk for protein structure analysis via small-angle X-ray scattering. The centrifugal micro-fluidic biochip or centrifugal micro-fluidic biodisk is a type of lab-on-a-chip technology, also known as lab-on-a-disc, that can be used to integrate processes such as separating, mixing, reaction and detecting molecules of nano-size in a single piece of platform, including a compact disk or DVD.
Microfluidics refers to the flow of fluid in channels or networks with at least one dimension on the micron scale. [1] [2] In open microfluidics, also referred to as open surface microfluidics or open-space microfluidics, at least one boundary confining the fluid flow of a system is removed, exposing the fluid to air or another interface such as a second fluid.
Digital microfluidics (DMF) is a platform for lab-on-a-chip systems that is based upon the manipulation of microdroplets. Droplets are dispensed, moved, stored, mixed, reacted, or analyzed on a platform with a set of insulated electrodes.
The main advantages achieved through miniaturization of sample volume with regards to chemical biology applications include the ability to perform high-throughput experiments using a minimum of sample, the means to isolate, amplify and detect rare events from a complex mixture, and the resources to perturb the environment of a cellular sample at the scale of the cell itself.