When.com Web Search

  1. Ad

    related to: clausius second law of thermodynamics

Search results

  1. Results From The WOW.Com Content Network
  2. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The second law of thermodynamics may be expressed in many specific ways, [23] the most prominent classical statements [24] being the statement by Rudolf Clausius (1854), the statement by Lord Kelvin (1851), and the statement in axiomatic thermodynamics by Constantin Carathéodory (1909). These statements cast the law in general physical terms ...

  3. Rudolf Clausius - Wikipedia

    en.wikipedia.org/wiki/Rudolf_Clausius

    Clausius restated the two laws of thermodynamics to overcome this contradiction. This paper made him famous among scientists. (The third law was developed by Walther Nernst, during the years 1906–1912). Clausius's most famous statement of the second law of thermodynamics was published in German in 1854, [10] and in English in 1856. [11]

  4. Clausius theorem - Wikipedia

    en.wikipedia.org/wiki/Clausius_theorem

    The Clausius theorem is a mathematical representation of the second law of thermodynamics. It was developed by Rudolf Clausius who intended to explain the relationship between the heat flow in a system and the entropy of the system and its surroundings. Clausius developed this in his efforts to explain entropy and define it quantitatively.

  5. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    The first established thermodynamic principle, which eventually became the second law of thermodynamics, was formulated by Sadi Carnot in 1824 in his book Reflections on the Motive Power of Fire. By 1860, as formalized in the works of scientists such as Rudolf Clausius and William Thomson , what are now known as the first and second laws were ...

  6. Nicolas Léonard Sadi Carnot - Wikipedia

    en.wikipedia.org/wiki/Nicolas_Léonard_Sadi_Carnot

    Independently of Kelvin, the German physicist Rudolf Clausius also based his study of thermodynamics on Carnot's work. Clausius modified Carnot's arguments to make them compatible with the mechanical equivalence of heat. This then led Clausius to define the concept of entropy and to formulate the second law of thermodynamics.

  7. History of entropy - Wikipedia

    en.wikipedia.org/wiki/History_of_entropy

    In 1862, Clausius stated what he calls the "theorem respecting the equivalence-values of the transformations" or what is now known as the second law of thermodynamics, as such: The algebraic sum of all the transformations occurring in a cyclical process can only be positive, or, as an extreme case, equal to nothing.

  8. Clausius–Duhem inequality - Wikipedia

    en.wikipedia.org/wiki/Clausius–Duhem_inequality

    The Clausius–Duhem inequality [1] [2] is a way of expressing the second law of thermodynamics that is used in continuum mechanics.This inequality is particularly useful in determining whether the constitutive relation of a material is thermodynamically allowable.

  9. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    This is closely related to the second law of thermodynamics: For example, in a finite system interacting with finite heat reservoirs, entropy is equivalent to system-reservoir correlations, and thus both increase together. [5] Take for example (experiment A) a closed box that is, at the beginning, half-filled with ideal gas.