Search results
Results From The WOW.Com Content Network
The concept of almost sure convergence does not come from a topology on the space of random variables. This means there is no topology on the space of random variables such that the almost surely convergent sequences are exactly the converging sequences with respect to that topology. In particular, there is no metric of almost sure convergence.
It is equivalent to check condition (iii) for the series = = = (′) where for each , and ′ are IID—that is, to employ the assumption that [] =, since is a sequence of random variables bounded by 2, converging almost surely, and with () = ().
Convergence in probability does not imply almost sure convergence in the discrete case [ edit ] If X n are independent random variables assuming value one with probability 1/ n and zero otherwise, then X n converges to zero in probability but not almost surely.
In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (with respect to the probability measure). [1] In other words, the set of outcomes on which the event does not occur has probability 0, even though the set might not be empty.
Then the sequence converges almost surely to a random variable with finite expectation. There is a symmetric statement for submartingales with bounded expectation of the positive part. A supermartingale is a stochastic analogue of a non-increasing sequence, and the condition of the theorem is analogous to the condition in the monotone ...
In particular, the proportion of heads after n flips will almost surely converge to 1 ⁄ 2 as n approaches infinity. Although the proportion of heads (and tails) approaches 1 ⁄ 2, almost surely the absolute difference in the number of heads and tails will become large as the number of flips becomes large. That is, the probability that the ...
A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).
For (,) a measurable space, a sequence μ n is said to converge setwise to a limit μ if = ()for every set .. Typical arrow notations are and .. For example, as a consequence of the Riemann–Lebesgue lemma, the sequence μ n of measures on the interval [−1, 1] given by μ n (dx) = (1 + sin(nx))dx converges setwise to Lebesgue measure, but it does not converge in total variation.