When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hermann–Mauguin notation - Wikipedia

    en.wikipedia.org/wiki/Hermann–Mauguin_notation

    a, b, or c glide translation along half the lattice vector of this face. n glide translation along half a face diagonal. d glide planes with translation along a quarter of a face diagonal or of a space diagonal. e two glides with the same glide plane and translation along two (different) half-lattice vectors.

  3. Glide reflection - Wikipedia

    en.wikipedia.org/wiki/Glide_reflection

    For any symmetry group containing a glide reflection, the glide vector is one half of an element of the translation group. If the translation vector of a glide plane operation is itself an element of the translation group, then the corresponding glide plane symmetry reduces to a combination of reflection symmetry and translational symmetry.

  4. Euclidean plane isometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane_isometry

    Notice that if a picture is drawn on one side of the sheet, then after turning the sheet over, we see the mirror image of the picture. These are examples of translations, rotations, and reflections respectively. There is one further type of isometry, called a glide reflection (see below under classification of Euclidean plane isometries).

  5. Symmetry group - Wikipedia

    en.wikipedia.org/wiki/Symmetry_group

    An example is O(3), the symmetry group of a sphere. Symmetry groups of Euclidean objects may be completely classified as the subgroups of the Euclidean group E( n ) (the isometry group of R n ). Two geometric figures have the same symmetry type when their symmetry groups are conjugate subgroups of the Euclidean group: that is, when the ...

  6. Symmetry (geometry) - Wikipedia

    en.wikipedia.org/wiki/Symmetry_(geometry)

    A drawing of a butterfly with bilateral symmetry, with left and right sides as mirror images of each other.. In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). [1]

  7. List of planar symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_planar_symmetry_groups

    This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane: 2 families of rosette groups – 2D point groups; 7 frieze groups – 2D line ...

  8. Isohedral figure - Wikipedia

    en.wikipedia.org/wiki/Isohedral_figure

    Similarly, a k-isohedral tiling has k separate symmetry orbits (it may contain m different face shapes, for m = k, or only for some m < k). [ 6 ] ("1-isohedral" is the same as "isohedral".) A monohedral polyhedron or monohedral tiling ( m = 1) has congruent faces, either directly or reflectively, which occur in one or more symmetry positions.

  9. Symmetry in mathematics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_mathematics

    Symmetry occurs not only in geometry, but also in other branches of mathematics. Symmetry is a type of invariance: the property that a mathematical object remains unchanged under a set of operations or transformations. [1] Given a structured object X of any sort, a symmetry is a mapping of the object onto itself which preserves the structure.

  1. Related searches scissor is an example of glide symmetry in one side of face sagging

    2d symmetry group2d symmetry
    symmetry group examplesscissor is an example of glide symmetry in one side of face sagging and red