Search results
Results From The WOW.Com Content Network
Graphs of y = b x for various bases b: base 10, base e, base 2, base 1 / 2 . Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself.
The four 4th roots of −1, none of which are real The three 3rd roots of −1, one of which is a negative real. An n th root of a number x, where n is a positive integer, is any of the n real or complex numbers r whose nth power is x:
In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is:
In binary (base-2) math, multiplication by a power of 2 is merely a register shift operation. Thus, multiplying by 2 is calculated in base-2 by an arithmetic shift. The factor (2 −1) is a right arithmetic shift, a (0) results in no operation (since 2 0 = 1 is the multiplicative identity element), and a (2 1) results in a left arithmetic shift ...
Let x = the repeating decimal: x = 0.1523 987; Multiply both sides by the power of 10 just great enough (in this case 10 4) to move the decimal point just before the repeating part of the decimal number: 10,000x = 1,523. 987; Multiply both sides by the power of 10 (in this case 10 3) that is the same as the number of places that repeat:
In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...
In the physics of gas molecules, the root-mean-square speed is defined as the square root of the average squared-speed. The RMS speed of an ideal gas is calculated using the following equation: v RMS = 3 R T M {\displaystyle v_{\text{RMS}}={\sqrt {3RT \over M}}}
Then in the second period by 2/12, in the third by 3/12, in the fourth by 3/12, fifth by 2/12 and at the end of the sixth period reaches its maximum with an increase of 1/12. The steps are 1:2:3:3:2:1 giving a total change of 12/12. Over the next six intervals the quantity reduces in a similar manner by 1, 2, 3, 3, 2, 1 twelfths.