Ad
related to: exact molecular weight calculator chemical formula
Search results
Results From The WOW.Com Content Network
In chemistry, the molar mass (M) (sometimes called molecular weight or formula weight, but see related quantities for usage) of a chemical compound is defined as the ratio between the mass and the amount of substance (measured in moles) of any sample of the compound. [1] The molar mass is a bulk, not molecular, property of a substance.
This template calculates the molecular mass (or molar mass) of a chemical compound. It is designed to be embedded in infoboxes {{ Infobox drug }} and {{ Chembox }} , but it can be used in-line just as well.
The terms "molecular mass", "molecular weight", and "molar mass" may be used interchangeably in less formal contexts where unit- and quantity-correctness is not needed. The molecular mass is more commonly used when referring to the mass of a single or specific well-defined molecule and less commonly than molecular weight when referring to a ...
The exact mass of an isotopic species (more appropriately, the calculated exact mass [9]) is obtained by summing the masses of the individual isotopes of the molecule. For example, the exact mass of water containing two hydrogen-1 ( 1 H) and one oxygen-16 ( 16 O) is 1.0078 + 1.0078 + 15.9949 = 18.0105 Da.
The molar mass constant, usually denoted by M u, is a physical constant defined as one twelfth of the molar mass of carbon-12: M u = M(12 C)/12. [1] The molar mass of an element or compound is its relative atomic mass (atomic weight) or relative molecular mass (molecular weight or formula weight) multiplied by the molar mass constant.
A molecular formula enumerates the number of atoms to reflect those in the molecule, so that the molecular formula for glucose is C 6 H 12 O 6 rather than the glucose empirical formula, which is CH 2 O. However, except for very simple substances, molecular chemical formulae lack needed structural information, and are ambiguous.
Nominal mass is a term used in high level mass spectrometric discussions, it can be calculated using the mass number of the most abundant isotope of each atom, without regard for the mass defect. For example, when calculating the nominal mass of a molecule of nitrogen (N 2) and ethylene (C 2 H 4) it comes out as. N 2 (2*14)= 28 Da C 2 H 4
The molar mass of a substance depends not only on its molecular formula, but also on the distribution of isotopes of each chemical element present in it. For example, the molar mass of calcium-40 is 39.962 590 98 (22) g/mol, whereas the molar mass of calcium-42 is 41.958 618 01 (27) g/mol, and of calcium with the normal isotopic mix is 40.078(4 ...