When.com Web Search

  1. Ads

    related to: proof of properties logarithms worksheet

Search results

  1. Results From The WOW.Com Content Network
  2. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    ln (r) is the standard natural logarithm of the real number r. Arg (z) is the principal value of the arg function; its value is restricted to (−π, π]. It can be computed using Arg (x + iy) = atan2 (y, x). Log (z) is the principal value of the complex logarithm function and has imaginary part in the range (−π, π].

  3. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    t. e. In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula where is the derivative of f. [1] Intuitively, this is the infinitesimal relative change in f; that is, the infinitesimal absolute change in f, namely scaled by the current value of f.

  4. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Main article: Pythagorean trigonometric identity. Identity 1: The following two results follow from this and the ratio identities. To obtain the first, divide both sides of by ; for the second, divide by . Similarly. Identity 2: The following accounts for all three reciprocal functions. Proof 2: Refer to the triangle diagram above.

  5. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    Calculus. In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] The technique is often performed in cases where it is easier to differentiate the logarithm of a function rather than the function itself.

  6. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Viète. de Moivre. Euler. Fourier. v. t. e. In trigonometry, trigonometric identities are equalities that involve trigonometric functions and are true for every value of the occurring variables for which both sides of the equality are defined. Geometrically, these are identities involving certain functions of one or more angles.

  7. Proof of Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Proof_of_Bertrand's_postulate

    Proof of Bertrand's postulate. In mathematics, Bertrand's postulate (now a theorem) states that, for each , there is a prime such that . First conjectured in 1845 by Joseph Bertrand, [1] it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan. [2]