Search results
Results From The WOW.Com Content Network
In pharmacokinetics, steady state refers to the situation where the overall intake of a drug is fairly in dynamic equilibrium with its elimination. In practice, it is generally considered that once regular dosing of a drug is started, steady state is reached after 3 to 5 times its half-life. In steady state and in linear pharmacokinetics, AUC ...
Most drugs are eliminated from the blood plasma with first-order kinetics. For this reason, when a drug is introduced into the body at a constant rate by intravenous therapy, it approaches a new steady concentration in the blood at a rate defined by its half-life. Similarly, when the intravenous infusion is ended, the drug concentration ...
where is the dosing interval, ss means steady state and 1 stands for a single-dose application. Another definition sets R ac to the ratio of the average drug concentration during one day under steady state conditions to the concentration after a single dose. [2]
A physiologic interpretation of clearance (at steady-state) is that clearance is a ratio of the mass generation and blood (or plasma) concentration. Its definition follows from the differential equation that describes exponential decay and is used to model kidney function and hemodialysis machine function:
At steady state, the concentration of free drug in the central compartment (i.e. circulation system) is equal to the concentration of free drug in the peripheral compartment (i.e. body tissues) If steady state is reached, context-sensitive half-life is equal to elimination half-life Only free drug that is in the plasma is metabolised
The area under the effect curve (AUEC) is an integral of the effect of a drug over time, estimated as a previously-established function of concentration. It was proposed to be used instead of AUC in animal-to-human dose translation, as computer simulation shows that it could cope better with half-life and dosing schedule variations than AUC.
The steady state or stable concentration is reached when the drug's supply to the blood plasma is the same as the rate of elimination from the plasma. It is necessary to calculate this concentration in order to decide the period between doses and the amount of drug supplied with each dose in prolonged treatments.
In pharmacokinetics, the rate of infusion (or dosing rate) refers not just to the rate at which a drug is administered, but the desired rate at which a drug should be administered to achieve a steady state of a fixed dose which has been demonstrated to be therapeutically effective. Abbreviations include K in, [1] K 0, [2] or R 0.