Search results
Results From The WOW.Com Content Network
For a differential equation parameterized on time, the variable's evolution is stable if and only if the real part of each root is negative. For difference equations, there is stability if and only if the modulus of each root is less than 1. For both types of equation, persistent fluctuations occur if there is at least one pair of complex roots.
In mathematics, the complex conjugate root theorem states that if P is a polynomial in one variable with real coefficients, and a + bi is a root of P with a and b real numbers, then its complex conjugate a − bi is also a root of P. [1]
The other roots of the equation are obtained either by changing of cube root or, equivalently, by multiplying the cube root by a primitive cube root of unity, that is . This formula for the roots is always correct except when p = q = 0 , with the proviso that if p = 0 , the square root is chosen so that C ≠ 0 .
Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.
For simple roots, this results immediately from the implicit function theorem. This is true also for multiple roots, but some care is needed for the proof. A small change of coefficients may induce a dramatic change of the roots, including the change of a real root into a complex root with a rather large imaginary part (see Wilkinson's polynomial).
Using this deflation guarantees that each root is computed only once and that all roots are found. The real variant follows the same pattern, but computes two roots at a time, either two real roots or a pair of conjugate complex roots. By avoiding complex arithmetic, the real variant can be faster (by a factor of 4) than the complex variant.
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Let f(z) be a polynomial (with complex coefficients) of degree n with no roots on the imaginary axis (i.e. the line z = ic where i is the imaginary unit and c is a real number).Let us define real polynomials P 0 (y) and P 1 (y) by f(iy) = P 0 (y) + iP 1 (y), respectively the real and imaginary parts of f on the imaginary line.