When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Topic model - Wikipedia

    en.wikipedia.org/wiki/Topic_model

    The author-topic model by Rosen-Zvi et al. [13] models the topics associated with authors of documents to improve the topic detection for documents with authorship information. HLTA was applied to a collection of recent research papers published at major AI and Machine Learning venues. The resulting model is called The AI Tree.

  3. Perceptron - Wikipedia

    en.wikipedia.org/wiki/Perceptron

    The perceptron is a simplified model of a biological neuron. While the complexity of biological neuron models is often required to fully understand neural behavior, research suggests a perceptron-like linear model can produce some behavior seen in real neurons. [30]

  4. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  5. Latent Dirichlet allocation - Wikipedia

    en.wikipedia.org/wiki/Latent_Dirichlet_allocation

    The Correlated Topic Model [18] follows this approach, inducing a correlation structure between topics by using the logistic normal distribution instead of the Dirichlet. Another extension is the hierarchical LDA (hLDA), [ 19 ] where topics are joined together in a hierarchy by using the nested Chinese restaurant process , whose structure is ...

  6. OPTICS algorithm - Wikipedia

    en.wikipedia.org/wiki/OPTICS_algorithm

    Ordering points to identify the clustering structure (OPTICS) is an algorithm for finding density-based [1] clusters in spatial data. It was presented by Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel and Jörg Sander. [ 2 ]

  7. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    In mixture of softmaxes, the model outputs multiple vectors ,, …,,, and predict the next word as = (,), where is a probability distribution by a linear-softmax operation on the activations of the hidden neurons within the model. The original paper demonstrated its effectiveness for recurrent neural networks. This was later found to work for ...

  8. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    [16] [17] Support vector machine weights have also been used to interpret SVM models in the past. [18] Posthoc interpretation of support vector machine models in order to identify features used by the model to make predictions is a relatively new area of research with special significance in the biological sciences.

  9. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.