Search results
Results From The WOW.Com Content Network
Leonard I. Schiff (1968) Quantum Mechanics McGraw-Hill Education; Davydov A.S. (1965) Quantum Mechanics Pergamon ISBN 9781483172026; Shankar, Ramamurti (2011). Principles of Quantum Mechanics (2nd ed.). Plenum Press. ISBN 978-0306447907. von Neumann, John (2018). Nicholas A. Wheeler (ed.). Mathematical Foundations of Quantum Mechanics ...
The series presently stands at four books (as of early 2023) covering the first four of six core courses devoted to: classical mechanics, quantum mechanics, special relativity and classical field theory, general relativity, cosmology, and statistical mechanics. Videos for all of these courses are available online.
The quantum harmonic oscillator; The quantum harmonic oscillator with an applied uniform field [1] The Inverse square root potential [2] The periodic potential The particle in a lattice; The particle in a lattice of finite length [3] The Pöschl–Teller potential; The quantum pendulum; The three-dimensional potentials The rotating system The ...
The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics.It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.
Modern Quantum Mechanics, often called Sakurai or Sakurai and Napolitano, is a standard graduate-level quantum mechanics textbook written originally by J. J. Sakurai and edited by San Fu Tuan in 1985, with later editions coauthored by Jim Napolitano.
In quantum mechanics and scattering theory, the one-dimensional step potential is an idealized system used to model incident, reflected and transmitted matter waves.The problem consists of solving the time-independent Schrödinger equation for a particle with a step-like potential in one dimension.
The phenomenology of quantum physics arose roughly between 1895 and 1915, and for the 10 to 15 years before the development of quantum mechanics (around 1925) physicists continued to think of quantum theory within the confines of what is now called classical physics, and in particular within the same mathematical structures.
The phase-space formulation is a formulation of quantum mechanics that places the position and momentum variables on equal footing in phase space.The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution (instead of a wave function, state vector, or density matrix) and operator multiplication is replaced by a star product.