Search results
Results From The WOW.Com Content Network
In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m −3), at any point in a volume.
Charge carrier density, also known as carrier concentration, denotes the number of charge carriers per volume. In SI units, it is measured in m −3. As with any density, in principle it can depend on position. However, usually carrier concentration is given as a single number, and represents the average carrier density over the whole material.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
Woods–Saxon potential for A = 50, relative to V 0 with a = 0.5 fm and =. The Woods–Saxon potential is a mean field potential for the nucleons (protons and neutrons) inside the atomic nucleus, which is used to describe approximately the forces applied on each nucleon, in the nuclear shell model for the structure of the nucleus.
The electron density of the ground state of a molecular system contains cusps at the location of the nuclei, and by identifying these from the total electron density of the system, the positions are thus established. From Kato's theorem, one also obtains the nuclear charge of the nuclei, and thus the external potential is fully defined.
the total electric charge density (total charge per unit volume), ρ, and; the total electric current density (total current per unit area), J. The universal constants appearing in the equations (the first two ones explicitly only in the SI formulation) are: the permittivity of free space, ε 0, and; the permeability of free space, μ 0, and
Model-independent analyses of nuclear charge densities for both He-3 and He-4, for example, indicate a significant central depression within a radius of 0.8 fm. [4] Other light nuclides, including carbon-12 and oxygen-16, exhibit similar off-center charge density maxima.
The Independent Atom Model (abbreviated to IAM), upon which the Multipole Model is based, is a method of charge density modelling. It relies on an assumption that electron distribution around the atom is isotropic, and that therefore charge density is dependent only on the distance from a nucleus.