When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Charge carrier density - Wikipedia

    en.wikipedia.org/wiki/Charge_carrier_density

    Charge carrier density, also known as carrier concentration, denotes the number of charge carriers per volume. In SI units, it is measured in m −3. As with any density, in principle it can depend on position. However, usually carrier concentration is given as a single number, and represents the average carrier density over the whole material.

  3. Periodic trends - Wikipedia

    en.wikipedia.org/wiki/Periodic_trends

    Nuclear charge is defined as the number of protons in the nucleus of an element.Thus, from left-to-right of a period and top-to-bottom of a group, as the number of protons in the nucleus increases, the nuclear charge will also increase. [8]

  4. Charge density - Wikipedia

    en.wikipedia.org/wiki/Charge_density

    In electromagnetism, charge density is the amount of electric charge per unit length, surface area, or volume. Volume charge density (symbolized by the Greek letter ρ) is the quantity of charge per unit volume, measured in the SI system in coulombs per cubic meter (C⋅m −3), at any point in a volume.

  5. Nuclear density - Wikipedia

    en.wikipedia.org/wiki/Nuclear_density

    Nuclear density is the density of the nucleus of an atom. For heavy nuclei, it is close to the nuclear saturation density n 0 = 0.15 ± 0.01 {\displaystyle n_{0}=0.15\pm 0.01} nucleons / fm 3 , which minimizes the energy density of an infinite nuclear matter . [ 1 ]

  6. Atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Atomic_nucleus

    The stable nucleus has approximately a constant density and therefore the nuclear radius R can be approximated by the following formula, R = r 0 A 1 / 3 {\displaystyle R=r_{0}A^{1/3}\,} where A = Atomic mass number (the number of protons Z , plus the number of neutrons N ) and r 0 = 1.25 fm = 1.25 × 10 −15 m.

  7. Shape of the atomic nucleus - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_atomic_nucleus

    An important factor in the internal structure of the nucleus is the nucleon-nucleon potential, which ultimately governs the distance between individual nucleons, [3] while a dip in the charge density of some light nuclide structures a lesser density of nucleonic matter. [4]

  8. Kato theorem - Wikipedia

    en.wikipedia.org/wiki/Kato_theorem

    The electron density of the ground state of a molecular system contains cusps at the location of the nuclei, and by identifying these from the total electron density of the system, the positions are thus established. From Kato's theorem, one also obtains the nuclear charge of the nuclei, and thus the external potential is fully defined.

  9. Multipole density formalism - Wikipedia

    en.wikipedia.org/wiki/Multipole_density_formalism

    The Independent Atom Model (abbreviated to IAM), upon which the Multipole Model is based, is a method of charge density modelling. It relies on an assumption that electron distribution around the atom is isotropic, and that therefore charge density is dependent only on the distance from a nucleus.