When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    For natural numbers (taken to include 0) n and k, the binomial coefficient () can be defined as the coefficient of the monomial X k in the expansion of (1 + X) n. The same coefficient also occurs (if k ≤ n) in the binomial formula

  4. Binomial approximation - Wikipedia

    en.wikipedia.org/wiki/Binomial_approximation

    The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.

  5. Binomial (polynomial) - Wikipedia

    en.wikipedia.org/wiki/Binomial_(polynomial)

    The expansion of the n th power uses the numbers n rows down from the top of the triangle. An application of the above formula for the square of a binomial is the "(m, n)-formula" for generating Pythagorean triples: For m < n, let a = n 2 − m 2, b = 2mn, and c = n 2 + m 2; then a 2 + b 2 = c 2.

  6. Pascal's triangle - Wikipedia

    en.wikipedia.org/wiki/Pascal's_triangle

    In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.

  7. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    Differentiating term-wise the binomial series within the disk of convergence | x | < 1 and using formula , one has that the sum of the series is an analytic function solving the ordinary differential equation (1 + x)u′(x) − αu(x) = 0 with initial condition u(0) = 1. The unique solution of this problem is the function u(x) = (1 + x) α.

  8. Abel's binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Abel's_binomial_theorem

    Abel's binomial theorem, named after Niels Henrik Abel, is a mathematical identity involving sums of binomial coefficients. It states the following:

  9. Vandermonde's identity - Wikipedia

    en.wikipedia.org/wiki/Vandermonde's_identity

    where the above convention for the coefficients of the polynomials agrees with the definition of the binomial coefficients, because both give zero for all i > m and j > n, respectively. By comparing coefficients of x r , Vandermonde's identity follows for all integers r with 0 ≤ r ≤ m + n .