Search results
Results From The WOW.Com Content Network
The nearest floating-point number with only five digits is 12.346. And 1/3 = 0.3333… is not a floating-point number in base ten with any finite number of digits. In practice, most floating-point systems use base two, though base ten (decimal floating point) is also common.
A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...
A floating-point format is specified by a base (also called radix) b, which is either 2 (binary) or 10 (decimal) in IEEE 754; a precision p; an exponent range from emin to emax, with emin = 1 − emax, or equivalently emin = − (emax − 1), for all IEEE 754 formats. A format comprises
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
IEEE 754-1985 [1] is a historic industry standard for representing floating-point numbers in computers, officially adopted in 1985 and superseded in 2008 by IEEE 754-2008, and then again in 2019 by minor revision IEEE 754-2019. [2]
The GNU Multiple Precision Floating-Point Reliable Library (GNU MPFR) is a GNU portable C library for arbitrary-precision binary floating-point computation with correct rounding, based on GNU Multi-Precision Library.
Modern scientific calculators generally have many more capabilities than the original four- or five-function calculator, and the capabilities differ between manufacturers and models. The capabilities of a modern scientific calculator include: Scientific notation; Floating-point decimal arithmetic; Logarithmic functions, using both base 10 and ...
ARM processors support (via a floating-point control register bit) an "alternative half-precision" format, which does away with the special case for an exponent value of 31 (11111 2). [10] It is almost identical to the IEEE format, but there is no encoding for infinity or NaNs; instead, an exponent of 31 encodes normalized numbers in the range ...