When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nilpotent matrix - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_matrix

    For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix []. That is, if is any nonzero 2 × 2 nilpotent matrix, then there exists a basis b 1, b 2 such that Nb 1 = 0 and Nb 2 = b 1. This classification theorem holds for matrices over any field. (It is not necessary for the field to be algebraically closed.)

  3. Nilpotent - Wikipedia

    en.wikipedia.org/wiki/Nilpotent

    [4] [5] More generally, in view of the above definitions, an operator is nilpotent if there is such that = (the zero function). Thus, a linear map is nilpotent iff it has a nilpotent matrix in some basis. Another example for this is the exterior derivative (again with =). Both are linked, also through supersymmetry and Morse theory, [6] as ...

  4. Nilpotent operator - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_operator

    The operator T is not nilpotent: take f to be the function that is 1 everywhere and direct calculation shows that T n f ≠ 0 (in the sense of L 2) for all n. However, T is quasinilpotent. First notice that K is in L 2 (X, m), therefore T is compact. By the spectral properties of compact operators, any nonzero λ in σ(T) is an eigenvalue.

  5. Drazin inverse - Wikipedia

    en.wikipedia.org/wiki/Drazin_inverse

    The Drazin inverse of a matrix of index 0 or 1 is called the group inverse or {1,2,5}-inverse and denoted A #. The group inverse can be defined, equivalently, by the properties AA # A = A, A # AA # = A #, and AA # = A # A. A projection matrix P, defined as a matrix such that P 2 = P, has index 1 (or 0) and has Drazin inverse P D = P.

  6. Analytic function of a matrix - Wikipedia

    en.wikipedia.org/wiki/Analytic_function_of_a_matrix

    In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix , which is involved in the closed-form solution of systems of linear differential equations .

  7. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    The matrix exponential of another matrix (matrix-matrix exponential), [24] is defined as = ⁡ = ⁡ for any normal and non-singular n×n matrix X, and any complex n×n matrix Y. For matrix-matrix exponentials, there is a distinction between the left exponential Y X and the right exponential X Y , because the multiplication operator for matrix ...

  8. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The Jordan block corresponding to λ is of the form λI + N, where N is a nilpotent matrix defined as N ij = δ i,j−1 (where δ is the Kronecker delta). The nilpotency of N can be exploited when calculating f(A) where f is a complex analytic function. For example, in principle the Jordan form could give a closed-form expression for the ...

  9. Nilpotent Lie algebra - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_Lie_algebra

    A somewhat easier equivalent condition for the nilpotency of : is nilpotent if and only if is nilpotent (as a Lie algebra). To see this, first observe that (1) implies that a d g {\displaystyle \mathrm {ad} \,{\mathfrak {g}}} is nilpotent, since the expansion of an ( n − 1) -fold nested bracket will consist of terms of the form in (1).