Search results
Results From The WOW.Com Content Network
As a result, symporters and antiporters are characterized by a slower transport speed, moving between 10 2 and 10 4 molecules per second. Compare this to ion channels that provide a means for facilitated diffusion to occur and allow between 10 7 and 10 8 ions pass through the plasma membrane per second.
In the roots of plants, the H+/K+ symporters are only one member of a group of several symporters/antiporters that specifically allow only one charged hydrogen ion (more commonly known as a proton) and one charged K+ ion. This group of carriers all contribute to modulate the chemiosmotic potential inside the cell.
In contrast to antiporters, symporters move ions or molecules in the same direction. [1] In this case both ions being transported will be moved either from the exoplasmic space into the cytoplasmic space or from the cytoplasmic space into the exoplasmic space. An example of a symporter is the sodium-glucose linked transporter or SGLT.
As symporters and antiporters are involved in coupling the transport of two molecules, they are commonly referred to as cotransporters. Unlike channel proteins which only transport substances through membranes passively, carrier proteins can transport ions and molecules either passively through facilitated diffusion, or via secondary active ...
Diffusion vs. Transport. In biology, an ion transporter is a transmembrane protein that moves ions (or other small molecules) across a biological membrane to accomplish many different biological functions, including cellular communication, maintaining homeostasis, energy production, etc. [1] There are different types of transporters including pumps, uniporters, antiporters, and symporters.
Function of symporters and antiporters. In an antiporter two species of ions or other solutes are pumped in opposite directions across a membrane. One of these species is allowed to flow from high to low concentration, which yields the entropic energy to drive the transport of the other solute from a low concentration region to a high one.
The sodium-calcium exchanger (often denoted Na + /Ca 2+ exchanger, exchange protein, or NCX) is an antiporter membrane protein that removes calcium from cells. It uses the energy that is stored in the electrochemical gradient of sodium (Na +) by allowing Na + to flow down its gradient across the plasma membrane in exchange for the countertransport of calcium ions (Ca 2+).
Unlike symporters and antiporters, uniporters transport one molecule/ion in a single direction based on the concentration gradient. [28] The entire process depends on the substrate's concentration difference across the membrane to be the driving force for the transport by uniporters. [28]