When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. 1 + 2 + 3 + 4 - 3 + 4 + ... - Wikipedia

    en.wikipedia.org/wiki/Sum_of_natural_numbers

    Sum of Natural Numbers (second proof and extra footage) includes demonstration of Euler's method. What do we get if we sum all the natural numbers? response to comments about video by Tony Padilla; Related article from New York Times; Why –1/12 is a gold nugget follow-up Numberphile video with Edward Frenkel

  3. Summation - Wikipedia

    en.wikipedia.org/wiki/Summation

    In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.

  4. Addition - Wikipedia

    en.wikipedia.org/wiki/Addition

    There are two popular ways to define the sum of two natural numbers a and b. If one defines natural numbers to be the cardinalities of finite sets, (the cardinality of a set is the number of elements in the set), then it is appropriate to define their sum as follows: Let N(S) be the cardinality of a set S.

  5. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    The n-th harmonic number, which is the sum of the reciprocals of the first n positive integers, is never an integer except for the case n = 1. Moreover, József Kürschák proved in 1918 that the sum of the reciprocals of consecutive natural numbers (whether starting from 1 or not) is never an integer.

  6. Summation by parts - Wikipedia

    en.wikipedia.org/wiki/Summation_by_parts

    It is used to prove Kronecker's lemma, which in turn, is used to prove a version of the strong law of large numbers under variance constraints. It may be used to prove Nicomachus's theorem that the sum of the first n {\displaystyle n} cubes equals the square of the sum of the first n {\displaystyle n} positive integers.

  7. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula c q ( n ) = ∑ 1 ≤ a ≤ q ( a , q ) = 1 e 2 π i a q n , {\displaystyle c_{q}(n)=\sum _{1\leq a\leq q \atop (a,q)=1}e^{2\pi i{\tfrac {a}{q}}n},}

  8. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Furthermore, let n be a natural number, and suppose P(m) is true for all natural numbers m less than n + 1. Then if P(n + 1) is false n + 1 is in S, thus being a minimal element in S, a contradiction. Thus P(n + 1) is true. Therefore, by the complete induction principle, P(n) holds for all natural numbers n; so S is empty, a contradiction. Q.E.D.

  9. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    If the Euclidean algorithm requires N steps for a pair of natural numbers a > b > 0, the smallest values of a and b for which this is true are the Fibonacci numbers F N+2 and F N+1, respectively. [98] More precisely, if the Euclidean algorithm requires N steps for the pair a > b, then one has a ≥ F N+2 and b ≥ F N+1.