Search results
Results From The WOW.Com Content Network
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
A quantity x depends exponentially on time t if = / where the constant a is the initial value of x, () =, the constant b is a positive growth factor, and τ is the time constant—the time required for x to increase by one factor of b: (+) = (+) / = / / = ().
Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows from solving [1] for
In terms of a displacement-time (x vs. t) graph, the instantaneous velocity (or, simply, velocity) can be thought of as the slope of the tangent line to the curve at any point, and the average velocity as the slope of the secant line between two points with t coordinates equal to the boundaries of the time period for the average velocity.
In contrast to an average velocity, referring to the overall motion in a finite time interval, the instantaneous velocity of an object describes the state of motion at a specific point in time. It is defined by letting the length of the time interval Δ t {\displaystyle \Delta t} tend to zero, that is, the velocity is the time derivative of the ...
Deceleration ramp down — positive jerk limit; linear increase in acceleration to zero; quadratic decrease in velocity; approaching the desired position at zero speed and zero acceleration; Segment four's time period (constant velocity) varies with distance between the two positions.
In continuum mechanics, time-dependent viscosity is a property of fluids whose viscosity changes as a function of time. The most common type of this is thixotropy , in which the viscosity of fluids under continuous shear decreases with time; the opposite is rheopecty , in which viscosity increases with time.
Many other fundamental quantities in science are time derivatives of one another: force is the time derivative of momentum; power is the time derivative of energy; electric current is the time derivative of electric charge; and so on. A common occurrence in physics is the time derivative of a vector, such as velocity or displacement. In dealing ...