Search results
Results From The WOW.Com Content Network
The gear ratios in transmission and final drive are important because different gear ratios will change the characteristics of a vehicle's performance. Valve timing gears on a Ford Taunus V4 engine — the small gear is on the crankshaft, the larger gear is on the camshaft. The crankshaft gear has 34 teeth, the camshaft gear has 68 teeth and ...
Analysis assumes a common gear design modulus. The planetary gears (blue) turn in a ratio determined by the number of teeth in each gear. Here, the ratio is − + 27 / 18 , or − + 3 / 2 ; meaning that each planet gear turns at 3 / 2 the rate of the sun gear, in the opposite direction. An outer ring gear is not shown.
Worm-and-gear sets are a simple and compact way to achieve a high torque, low speed gear ratio. For example, helical gears are normally limited to gear ratios of less than 10:1 while worm-and-gear sets vary from 10:1 to 500:1. [45] A disadvantage is the potential for considerable sliding action, leading to low efficiency. [46]
The gear range is difference between the highest and lowest gear ratios and may be expressed as a percentage (e.g., 500%) or as a ratio (e.g., 5:1). Heel [ edit ]
Differentials can also provide a gear ratio between the input and output shafts (called the "axle ratio" or "diff ratio"). For example, many differentials in motor vehicles provide a gearing reduction by having fewer teeth on the pinion than the ring gear .
The speed ratio for a pair of meshing gears can be computed from ratio of the radii of the pitch circles and the ratio of the number of teeth on each gear, its gear ratio. Two meshing gears transmit rotational motion. The velocity v of the point of contact on the pitch circles is the same on both gears, and is given by = =, where input gear A ...
Typical gear ratios on bicycles range from very low or light gearing around 20 gear inches (1.6 metres per revolution), via medium gearing around 70 gear inches (5.6 m), to very high or heavy gearing around 125 gear inches (10 m). As in a car, low gearing is for going up hills and high gearing is for going fast.
Therefore, regardless of the worm's size (sensible engineering limits notwithstanding), the gear ratio is the "size of the worm wheel - to - 1". Given a single-start worm, a 20-tooth worm wheel reduces the speed by the ratio of 20:1. With spur gears, a gear of 12 teeth must match with a 240-tooth gear to achieve the same 20:1 ratio.