When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cavendish experiment - Wikipedia

    en.wikipedia.org/wiki/Cavendish_experiment

    The torque is where is the torsion coefficient of the wire. However, a torque in the opposite direction is also generated by the gravitational pull of the masses. It can be written as a product of the attractive force of a large ball on a small ball and the distance L/2 to the suspension wire.

  3. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    Torque has the dimension of force times distance, symbolically T −2 L 2 M and those fundamental dimensions are the same as that for energy or work. Official SI literature indicates newton-metre, is properly denoted N⋅m, as the unit for torque; although this is dimensionally equivalent to the joule, which is not used for torque.

  4. Centers of gravity in non-uniform fields - Wikipedia

    en.wikipedia.org/wiki/Centers_of_gravity_in_non...

    In a non-uniform field, gravitational effects such as potential energy, force, and torque can no longer be calculated using the center of mass alone. In particular, a non-uniform gravitational field can produce a torque on an object, even about an axis through the center of mass. The center of gravity seeks to explain this effect.

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  6. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The force of gravity on the mass of a simple pendulum generates a torque = around the axis perpendicular to the plane of the pendulum movement. Here r {\displaystyle \mathbf {r} } is the distance vector from the torque axis to the pendulum center of mass, and F {\displaystyle \mathbf {F} } is the net force on the mass.

  7. Center of mass - Wikipedia

    en.wikipedia.org/wiki/Center_of_mass

    A body's center of gravity is the point around which the resultant torque due to gravity forces vanishes. [13] Where a gravity field can be considered to be uniform, the mass-center and the center-of-gravity will be the same.

  8. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  9. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Newton's law of gravitation resembles Coulomb's law of electrical forces, which is used to calculate the magnitude of the electrical force arising between two charged bodies. Both are inverse-square laws, where force is inversely proportional to the square of the distance between the bodies. Coulomb's law has charge in place of mass and a ...