Ads
related to: how to calculate pwv formula statistics excel sheet
Search results
Results From The WOW.Com Content Network
The theory of the velocity of the transmission of the pulse through the circulation dates back to 1808 with the work of Thomas Young. [9] The relationship between pulse wave velocity (PWV) and arterial wall stiffness can be derived from Newton's second law of motion (=) applied to a small fluid element, where the force on the element equals the product of density (the mass per unit volume ...
In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. [1] Note that such factors may well be functions of the parameters of the pdf or pmf.
Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".
All superlative indices produce similar results and are generally the favored formulas for calculating price indices. [14] A superlative index is defined technically as "an index that is exact for a flexible functional form that can provide a second-order approximation to other twice-differentiable functions around the same point." [15]
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
The notation AR(p) refers to the autoregressive model of order p.The AR(p) model is written as = = + where , …, are parameters and the random variable is white noise, usually independent and identically distributed (i.i.d.) normal random variables.
This is important, as it makes an enormous difference to the ease with which the statistics can be analyzed so as to extract maximum information from the data series. If there are other non-linear effects that have a correlation to the independent variable (such as cyclic influences), the use of least-squares estimation of the trend is not valid.
In probability theory and statistics, the generalized extreme value (GEV) distribution [2] is a family of continuous probability distributions developed within extreme value theory to combine the Gumbel, Fréchet and Weibull families also known as type I, II and III extreme value distributions.