Search results
Results From The WOW.Com Content Network
In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle. When the position operator is considered with a wide enough domain (e.g. the space of tempered distributions), its eigenvalues are the possible position vectors of the particle. [1]
In a basis of Hilbert space consisting of momentum eigenstates expressed in the momentum representation, the action of the operator is simply multiplication by p, i.e. it is a multiplication operator, just as the position operator is a multiplication operator in the position representation.
Position space (also real space or coordinate space) is the set of all position vectors r in Euclidean space, and has dimensions of length; a position vector defines a point in space. (If the position vector of a point particle varies with time, it will trace out a path, the trajectory of a particle.) Momentum space is the set of all momentum ...
between the position operator x and momentum operator p x in the x direction of a point particle in one dimension, where [x, p x] = x p x − p x x is the commutator of x and p x , i is the imaginary unit, and ℏ is the reduced Planck constant h/2π, and is the unit operator. In general, position and momentum are vectors of operators and their ...
Position-momentum Fourier transform (1 particle in 3d) Φ = momentum–space wavefunction; Ψ = position–space wavefunction ... (eigenvalues of operator)
The classical definition of angular momentum is =.The quantum-mechanical counterparts of these objects share the same relationship: = where r is the quantum position operator, p is the quantum momentum operator, × is cross product, and L is the orbital angular momentum operator.
Due to linearity, vectors can be defined in any number of dimensions, as each component of the vector acts on the function separately. One mathematical example is the del operator, which is itself a vector (useful in momentum-related quantum operators, in the table below). An operator in n-dimensional space can be written:
It is for this reason that the momentum operator is referred to as the generator of translation. [2] A nice way to double-check that these relations are correct is to do a Taylor expansion of the translation operator acting on a position-space wavefunction.