Search results
Results From The WOW.Com Content Network
An interesting example is the modular group = (): it acts on the tree given by the 1-skeleton of the associated tessellation of the hyperbolic plane and it has a finite index free subgroup (on two generators) of index 6 (for example the set of matrices in which reduce to the identity modulo 2 is such a group).
For example, a cone is formed by keeping one point of a line fixed whilst moving another point along a circle. A surface is doubly ruled if through every one of its points there are two distinct lines that lie on the surface. The hyperbolic paraboloid and the hyperboloid of one sheet are doubly ruled surfaces.
One has a hyperboloid of revolution if and only if =. Otherwise, the axes are uniquely defined (up to the exchange of the x-axis and the y-axis). There are two kinds of hyperboloids. In the first case (+1 in the right-hand side of the equation): a one-sheet hyperboloid, also called a hyperbolic hyperboloid.
Download as PDF; Printable version; From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Hyperboloid structure ...
This page is a list of hyperboloid structures. These were first applied in architecture by Russian engineer Vladimir Shukhov (1853–1939). Shukhov built his first example as a water tower ( hyperbolic shell ) for the 1896 All-Russian Exposition .
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Some connector styles may combine pin and socket connection types in a single unit, referred to as a hermaphroditic connector. [6]: 56 These connectors includes mating with both male and female aspects, involving complementary paired identical parts each containing both protrusions and indentations. These mating surfaces are mounted into ...
Hyperbolic motions can also be described on the hyperboloid model of hyperbolic geometry. [ 1 ] This article exhibits these examples of the use of hyperbolic motions: the extension of the metric d ( a , b ) = | log ( b / a ) | {\displaystyle d(a,b)=\vert \log(b/a)\vert } to the half-plane and the unit disk .