Search results
Results From The WOW.Com Content Network
A wave can be longitudinal where the oscillations are parallel (or antiparallel) to the propagation direction, or transverse where the oscillations are perpendicular to the propagation direction. These oscillations are characterized by a periodically time-varying displacement in the parallel or perpendicular direction, and so the instantaneous ...
Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum and alternating current. Oscillations can be used in physics to approximate complex interactions, such ...
That is, the sum and difference of two phases (in degrees) should be computed by the formulas [[+]] [[]] respectively. Thus, for example, the sum of phase angles 190° + 200° is 30° ( 190 + 200 = 390 , minus one full turn), and subtracting 50° from 30° gives a phase of 340° ( 30 − 50 = −20 , plus one full turn).
A simple harmonic oscillator is an oscillator that is neither driven nor damped.It consists of a mass m, which experiences a single force F, which pulls the mass in the direction of the point x = 0 and depends only on the position x of the mass and a constant k.
Simple harmonic motion can serve as a mathematical model for a variety of motions, but is typified by the oscillation of a mass on a spring when it is subject to the linear elastic restoring force given by Hooke's law. The motion is sinusoidal in time and demonstrates a single resonant frequency.
A mechanical wave is an oscillation of matter, and therefore transfers energy through a medium. [19] While waves can move over long distances, the movement of the medium of transmission—the material—is limited.
Vibration, standing waves in a string. The fundamental and the first 5 overtones in the harmonic series.. A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch.
The Q factor is a parameter that describes the resonance behavior of an underdamped harmonic oscillator (resonator). Sinusoidally driven resonators having higher Q factors resonate with greater amplitudes (at the resonant frequency) but have a smaller range of frequencies around that frequency for which they resonate; the range of frequencies for which the oscillator resonates is called the ...