Search results
Results From The WOW.Com Content Network
Armadillo is a C++ linear algebra library (matrix and vector maths), aiming towards a good balance between speed and ease of use. [1] It employs template classes, and has optional links to BLAS and LAPACK. The syntax is similar to MATLAB. Blitz++ is a high-performance vector mathematics library written in C++.
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
O-Matrix – programming language; OriginPro – statistics and graphing, programming access to NAG library; PASS Sample Size Software (PASS) – power and sample size software from NCSS; Plotly – plotting library and styling interface for analyzing data and creating browser-based graphs. Available for R, Python, MATLAB, Julia, and Perl
More generally, there are d! possible orders for a given array, one for each permutation of dimensions (with row-major and column-order just 2 special cases), although the lists of stride values are not necessarily permutations of each other, e.g., in the 2-by-3 example above, the strides are (3,1) for row-major and (1,2) for column-major.
MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
An "almost" triangular matrix, for example, an upper Hessenberg matrix has zero entries below the first subdiagonal. Hollow matrix: A square matrix whose main diagonal comprises only zero elements. Integer matrix: A matrix whose entries are all integers. Logical matrix: A matrix with all entries either 0 or 1.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...