Search results
Results From The WOW.Com Content Network
Therefore, for matrices of order 5 or more, the eigenvalues and eigenvectors cannot be obtained by an explicit algebraic formula, and must therefore be computed by approximate numerical methods. Even the exact formula for the roots of a degree 3 polynomial is numerically impractical.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
A generalized eigenvalue problem (second sense) is the problem of finding a (nonzero) vector v that obeys = where A and B are matrices. If v obeys this equation, with some λ , then we call v the generalized eigenvector of A and B (in the second sense), and λ is called the generalized eigenvalue of A and B (in the second sense) which ...
Let the same eigenvalue equation be solved using a basis set of dimension N + 1 that comprises the previous N functions plus an additional one. Let the resulting eigenvalues be ordered from the smallest, λ ′ 1, to the largest, λ ′ N+1. Then, the Rayleigh theorem for eigenvalues states that λ ′ i ≤ λ i for i = 1 to N.
These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables, as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid, which is presented as a Kronecker sum of discrete Laplacians in one-dimension.
Thus one can only calculate the numerical rank by making a decision which of the eigenvalues are close enough to zero. Pseudo-inverse The pseudo inverse of a matrix A {\displaystyle A} is the unique matrix X = A + {\displaystyle X=A^{+}} for which A X {\displaystyle AX} and X A {\displaystyle XA} are symmetric and for which A X A = A , X A X ...
In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]
In mathematics, power iteration (also known as the power method) is an eigenvalue algorithm: given a diagonalizable matrix, the algorithm will produce a number , which is the greatest (in absolute value) eigenvalue of , and a nonzero vector , which is a corresponding eigenvector of , that is, =.