Search results
Results From The WOW.Com Content Network
Metallic bonding is a type of chemical bonding that arises from the electrostatic attractive force between conduction electrons (in the form of an electron cloud of delocalized electrons) and positively charged metal ions. It may be described as the sharing of free electrons among a structure of positively charged ions .
This transfer of electrons is known as electrovalence in contrast to covalence. In the simplest case, the cation is a metal atom and the anion is a nonmetal atom, but these ions can be more complex, e.g. polyatomic ions like NH + 4 or SO 2− 4. In simpler words, an ionic bond results from the transfer of electrons from a metal to a non-metal ...
Ionic bonding leads to separate positive and negative ions. Ionic charges are commonly between −3e to +3e. Ionic bonding commonly occurs in metal salts such as sodium chloride (table salt). A typical feature of ionic bonds is that the species form into ionic crystals, in which no ion is specifically paired with any single other ion in a ...
To indicate a more severe charge, the number of additional or missing electrons is supplied, as seen in O 2 2-(negative charge, peroxide) and He 2+ (positive charge, alpha particle). [ 4 ] Ions consisting of only a single atom are termed atomic or monatomic ions, while two or more atoms form molecular ions or polyatomic ions .
Adiabatic ionization is a form of ionization in which an electron is removed from or added to an atom or molecule in its lowest energy state to form an ion in its lowest energy state. [ 16 ] The Townsend discharge is a good example of the creation of positive ions and free electrons due to ion impact.
The metal of the anode will oxidize, going from an oxidation state of 0 (in the solid form) to a positive oxidation state and become an ion. At the cathode, the metal ion in solution will accept one or more electrons from the cathode and the ion's oxidation state is reduced to 0. This forms a solid metal that electrodeposits on the cathode. The ...
Electron transfer (ET) occurs when an electron relocates from an atom, ion, or molecule, to another such chemical entity. ET describes the mechanism by which electrons are transferred in redox reactions. [2] Electrochemical processes are ET reactions. ET reactions are relevant to photosynthesis and respiration and commonly involve transition ...
An element in a free form has OS = 0. In a compound or ion, the sum of the oxidation states equals the total charge of the compound or ion. Fluorine in compounds has OS = −1; this extends to chlorine and bromine only when not bonded to a lighter halogen, oxygen or nitrogen. Group 1 and group 2 metals in compounds have OS = +1 and +2 ...