When.com Web Search

  1. Ad

    related to: shannon's entropy explained in detail diagram

Search results

  1. Results From The WOW.Com Content Network
  2. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...

  3. Shannon's source coding theorem - Wikipedia

    en.wikipedia.org/wiki/Shannon's_source_coding...

    In information theory, the source coding theorem (Shannon 1948) [2] informally states that (MacKay 2003, pg. 81, [3] Cover 2006, Chapter 5 [4]): N i.i.d. random variables each with entropy H(X) can be compressed into more than N H(X) bits with negligible risk of information loss, as N → ∞; but conversely, if they are compressed into fewer than N H(X) bits it is virtually certain that ...

  4. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    This equation gives the entropy in the units of "bits" (per symbol) because it uses a logarithm of base 2, and this base-2 measure of entropy has sometimes been called the shannon in his honor. Entropy is also commonly computed using the natural logarithm (base e, where e is Euler's number), which produces a measurement of entropy in nats per ...

  5. Entropy coding - Wikipedia

    en.wikipedia.org/wiki/Entropy_coding

    In information theory, an entropy coding (or entropy encoding) is any lossless data compression method that attempts to approach the lower bound declared by Shannon's source coding theorem, which states that any lossless data compression method must have an expected code length greater than or equal to the entropy of the source. [1]

  6. Information diagram - Wikipedia

    en.wikipedia.org/wiki/Information_diagram

    An information diagram is a type of Venn diagram used in information theory to illustrate relationships among Shannon's basic measures of information: entropy, joint entropy, conditional entropy and mutual information. [1] [2] Information

  7. Channel capacity - Wikipedia

    en.wikipedia.org/wiki/Channel_capacity

    Information-theoretic analysis of communication systems that incorporate feedback is more complicated and challenging than without feedback. Possibly, this was the reason C.E. Shannon chose feedback as the subject of the first Shannon Lecture, delivered at the 1973 IEEE International Symposium on Information Theory in Ashkelon, Israel.

  8. Shannon (unit) - Wikipedia

    en.wikipedia.org/wiki/Shannon_(unit)

    The shannon also serves as a unit of the information entropy of an event, which is defined as the expected value of the information content of the event (i.e., the probability-weighted average of the information content of all potential events). Given a number of possible outcomes, unlike information content, the entropy has an upper bound ...

  9. Information content - Wikipedia

    en.wikipedia.org/wiki/Information_content

    The Shannon information is closely related to entropy, which is the expected value of the self-information of a random variable, quantifying how surprising the random variable is "on average". This is the average amount of self-information an observer would expect to gain about a random variable when measuring it.