When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    The flow rate can be converted to a mean flow velocity V by dividing by the wetted area of the flow (which equals the cross-sectional area of the pipe if the pipe is full of fluid). Pressure has dimensions of energy per unit volume, therefore the pressure drop between two points must be proportional to the dynamic pressure q.

  3. Manning formula - Wikipedia

    en.wikipedia.org/wiki/Manning_formula

    Sewers are often constructed as circular pipes. It has long been accepted that the value of n varies with the flow depth in partially filled circular pipes. [9] A complete set of explicit equations that can be used to calculate the depth of flow and other unknown variables when applying the Manning equation to circular pipes is available. [10]

  4. Entrance length (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Entrance_length_(fluid...

    In fluid dynamics, the entrance length is the distance a flow travels after entering a pipe before the flow becomes fully developed. [1] Entrance length refers to the length of the entry region, the area following the pipe entrance where effects originating from the interior wall of the pipe propagate into the flow as an expanding boundary layer.

  5. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    In non ideal fluid dynamics, the Hagen–Poiseuille equation, also known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille equation, is a physical law that gives the pressure drop in an incompressible and Newtonian fluid in laminar flow flowing through a long cylindrical pipe of constant cross section.

  6. Choked flow - Wikipedia

    en.wikipedia.org/wiki/Choked_flow

    The choked velocity is a function of the upstream pressure but not the downstream. Although the velocity is constant, the mass flow rate is dependent on the density of the upstream gas, which is a function of the upstream pressure. Flow velocity reaches the speed of sound in the orifice, and it may be termed a sonic orifice.

  7. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    r = radius of the pipe (for a pipe of circular section, the internal radius of the pipe). v = mean velocity of fluid flowing through the pipe. A = cross sectional area of the pipe. In long pipes, the loss in pressure (assuming the pipe is level) is proportional to the length of pipe involved.

  8. Plug flow - Wikipedia

    en.wikipedia.org/wiki/Plug_flow

    In fluid mechanics, plug flow is a simple model of the velocity profile of a fluid flowing in a pipe. In plug flow, the velocity of the fluid is assumed to be constant across any cross-section of the pipe perpendicular to the axis of the pipe. The plug flow model assumes there is no boundary layer adjacent to the inner wall of the pipe.

  9. Pipe flow - Wikipedia

    en.wikipedia.org/wiki/Pipe_flow

    Pipe flow does not have a free surface which is found in open-channel flow. Pipe flow, being confined within closed conduit, does not exert direct atmospheric pressure, but does exert hydraulic pressure on the conduit. Not all flow within a closed conduit is considered pipe flow. Storm sewers are closed conduits but usually maintain a free ...