When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    [1] [2] It is generally divided into two subfields: discrete optimization and continuous optimization. Optimization problems arise in all quantitative disciplines from computer science and engineering [3] to operations research and economics, and the development of solution methods has been of interest in mathematics for centuries. [4] [5]

  3. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    Optimization problems can be divided into two categories, depending on whether the variables are continuous or discrete: An optimization problem with discrete variables is known as a discrete optimization , in which an object such as an integer , permutation or graph must be found from a countable set .

  4. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    These terms could be priors, penalties, or constraints. Explicit regularization is commonly employed with ill-posed optimization problems. The regularization term, or penalty, imposes a cost on the optimization function to make the optimal solution unique. Implicit regularization is all other forms of regularization. This includes, for example ...

  5. Test functions for optimization - Wikipedia

    en.wikipedia.org/.../Test_functions_for_optimization

    The artificial landscapes presented herein for single-objective optimization problems are taken from Bäck, [1] Haupt et al. [2] and from Rody Oldenhuis software. [3] Given the number of problems (55 in total), just a few are presented here. The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and ...

  6. Evolutionary algorithm - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_algorithm

    The no free lunch theorem of optimization states that all optimization strategies are equally effective when the set of all optimization problems is considered. Under the same condition, no evolutionary algorithm is fundamentally better than another. This can only be the case if the set of all problems is restricted.

  7. Loss function - Wikipedia

    en.wikipedia.org/wiki/Loss_function

    In many applications, objective functions, including loss functions as a particular case, are determined by the problem formulation. In other situations, the decision maker’s preference must be elicited and represented by a scalar-valued function (called also utility function) in a form suitable for optimization — the problem that Ragnar Frisch has highlighted in his Nobel Prize lecture. [4]

  8. Multi-objective optimization - Wikipedia

    en.wikipedia.org/wiki/Multi-objective_optimization

    Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.

  9. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    The space of all candidate solutions, before any feasible points have been excluded, is called the feasible region, feasible set, search space, or solution space. [2] This is the set of all possible solutions that satisfy the problem's constraints. Constraint satisfaction is the process of finding a point in the feasible set.