Search results
Results From The WOW.Com Content Network
In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .
Gauss's law for gravity is often more convenient to work from than Newton's law. [1] The form of Gauss's law for gravity is mathematically similar to Gauss's law for electrostatics, one of Maxwell's equations. Gauss's law for gravity has the same mathematical relation to Newton's law that Gauss's law for electrostatics bears to Coulomb's law.
In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.
Electric field from positive to negative charges. Gauss's law describes the relationship between an electric field and electric charges: an electric field points away from positive charges and towards negative charges, and the net outflow of the electric field through a closed surface is proportional to the enclosed charge, including bound charge due to polarization of material.
It is an arbitrary closed surface S = ∂V (the boundary of a 3-dimensional region V) used in conjunction with Gauss's law for the corresponding field (Gauss's law, Gauss's law for magnetism, or Gauss's law for gravity) by performing a surface integral, in order to calculate the total amount of the source quantity enclosed; e.g., amount of ...
Mathematically, we can state the law of charge conservation as a continuity equation: = ˙ ˙ (). where / is the electric charge accumulation rate in a specific volume at time t, ˙ is the amount of charge flowing into the volume and ˙ is the amount of charge flowing out of the volume; both amounts are regarded as generic functions of time.
If magnetic monopoles were to be discovered, then Gauss's law for magnetism would state the divergence of B would be proportional to the magnetic charge density ρ m, analogous to Gauss's law for electric field. For zero net magnetic charge density (ρ m = 0), the original form of Gauss's magnetism law is the result.
Equation (56) in Maxwell's 1861 paper is Gauss's law for magnetism, ∇ • B = 0. Equation (112) is Ampère's circuital law , with Maxwell's addition of displacement current . This may be the most remarkable contribution of Maxwell's work, enabling him to derive the electromagnetic wave equation in his 1865 paper A Dynamical Theory of the ...