Search results
Results From The WOW.Com Content Network
Ernst Eduard Kummer (29 January 1810 – 14 May 1893) was a German mathematician.Skilled in applied mathematics, Kummer trained German army officers in ballistics; afterwards, he taught for 10 years in a gymnasium, the German equivalent of high school, where he inspired the mathematical career of Leopold Kronecker.
In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of nth roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer around the 1840s in his pioneering work on Fermat's Last Theorem .
In number theory an ideal number is an algebraic integer which represents an ideal in the ring of integers of a number field; the idea was developed by Ernst Kummer, and led to Richard Dedekind's definition of ideals for rings.
In number theory, a regular prime is a special kind of prime number, defined by Ernst Kummer in 1850 to prove certain cases of Fermat's Last Theorem. Regular primes may be defined via the divisibility of either class numbers or of Bernoulli numbers. The first few regular odd primes are:
Kummer surface, a related geometrical structure discovered by Ernst Kummer Ferdinand von Kummer (1816–1900), German general Frederic Arnold Kummer (1873–1943), American author, playwright, and screenwriter
In mathematics, Kummer's theorem is a formula for the exponent of the highest power of a prime number p that divides a given binomial coefficient. In other words, it gives the p-adic valuation of a binomial coefficient. The theorem is named after Ernst Kummer, who proved it in a paper, (Kummer 1852).
The conjecture was first made by Ernst Kummer on 28 December 1849 and 24 April 1853 in letters to Leopold Kronecker, reprinted in (Kummer 1975, pages 84, 93, 123–124), and independently rediscovered around 1920 by Philipp Furtwängler and Harry Vandiver (1946, p. 576),
Applying Kummer's 24 = 6×4 transformations to the hypergeometric function gives the 6 = 2×3 solutions above corresponding to each of the 2 possible exponents at each of the 3 singular points, each of which appears 4 times because of the identities