When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Tangential speed - Wikipedia

    en.wikipedia.org/wiki/Tangential_speed

    Tangential speed and rotational speed are related: the faster an object rotates around an axis, the larger the speed. Tangential speed is directly proportional to rotational speed at any fixed distance from the axis of rotation. [1] However, tangential speed, unlike rotational speed, depends on radial distance (the distance from the axis).

  4. Stopping sight distance - Wikipedia

    en.wikipedia.org/wiki/Stopping_sight_distance

    The design sight distance allows a below-average driver to stop in time to avoid a collision in most cases. Driver perception/reaction distance is calculated by: d PRT = 0.278 Vt (metric) d PRT = 1.47 Vt (US customary) Where: d PRT = driver perception-reaction distance, m (ft) V = design speed, km/h (mph) t = brake reaction time, in seconds

  5. Braking distance - Wikipedia

    en.wikipedia.org/wiki/Braking_distance

    Braking distance refers to the distance a vehicle will travel from the point when its brakes are fully applied to when it comes to a complete stop. It is primarily affected by the original speed of the vehicle and the coefficient of friction between the tires and the road surface, [Note 1] and negligibly by the tires' rolling resistance and vehicle's air drag.

  6. Proper motion - Wikipedia

    en.wikipedia.org/wiki/Proper_motion

    Barnard's Star's transverse speed is 90 km/s and its radial velocity is 111 km/s (perpendicular (at a right, 90° angle), which gives a true or "space" motion of 142 km/s. True or absolute motion is more difficult to measure than the proper motion, because the true transverse velocity involves the product of the proper motion times the distance.

  7. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    The speed of light in vacuum is thus the upper limit for speed for all physical systems. In addition, the speed of light is an invariant quantity: it has the same value, irrespective of the position or speed of the observer. This property makes the speed of light c a natural measurement unit for speed and a fundamental constant of nature.

  8. Speed - Wikipedia

    en.wikipedia.org/wiki/Speed

    Speed is the magnitude of velocity (a vector), which indicates additionally the direction of motion. Speed has the dimensions of distance divided by time. The SI unit of speed is the metre per second (m/s), but the most common unit of speed in everyday usage is the kilometre per hour (km/h) or, in the US and the UK, miles per hour (mph).

  9. Retarded time - Wikipedia

    en.wikipedia.org/wiki/Retarded_time

    Position vectors r and r′ used in the calculation. Retarded time t r or t′ is calculated with a "speed-distance-time" calculation for EM fields.. If the EM field is radiated at position vector r′ (within the source charge distribution), and an observer at position r measures the EM field at time t, the time delay for the field to travel from the charge distribution to the observer is |r ...